

Agenda

\square Unit Conversion
Solutions \& Concentrations
$\square \mathrm{pH}$
Volatility
Reviewing Substitutions
\square Stoichiometry

 Unit Conversions

Gallons x Specific Gravity x Density ${ }_{H 2 O}=$ Mass

750 gal	0.96	$8.34 \#$
		gal

Used when:

- Converting between units, such as metric to empirical
- Using provided data, such as density or analytical data, to determine a specific quantity, such as pounds of material
used

PREFIX	SYMBOL	UNIT EQUIVALENT
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}

Metric conversions

$$
1 \mathrm{~kg}=10^{3} \mathrm{~g}
$$

$$
1 \mu \mathrm{~g}=10^{-6} \mathrm{~g}
$$

Used in Dimensional Analysis:

124 mg	$10^{-3} \mathrm{~g}$
L	mg

Temperature conversions

Standard Temperature Scales

$$
\begin{aligned}
& { }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8 \\
& { }^{\circ} \mathrm{F}=(1.8)^{\circ} \mathrm{C}+32
\end{aligned}
$$

Absolute Zero
Temperature Scales
$K={ }^{\circ} \mathrm{C}+273.15$
${ }^{\circ} \mathrm{R}={ }^{\circ} \mathrm{F}+459.67$

What about significant figures???

- Used to address precision and accuracy
- Your answer can not be more exact than your method to measures the inputs
- TURA asks for whole number pounds (except dioxin), so sig-fig not considered

Solutions \& Concentration

$$
\begin{aligned} & \text { Solution Terminology } \end{aligned}
$$
 Solution Terminology

So many units!!!

$\% \mathrm{~m}$ or $\% \mathbf{\omega}$ or $\% \boldsymbol{\omega} / \boldsymbol{\omega} \underset{\text { mass of solution }}{\text { mass }} \times 100 \% \quad \mathrm{~g} / \mathrm{g} \quad \# / \# \mathrm{~kg} / \mathrm{kg}$
$\% v$ or \%v/v \quad volume of solute $\quad \mathbf{x} 100 \% \mathrm{ml} / \mathrm{ml}$ gal/gal volume of solution Analytical Data in ppm
for liquid concentrations:

$$
\mathrm{ppm} \times \text { solution density }=\mathrm{mg} / \mathrm{L} \text { or } \mathrm{lb} / \mathrm{gal}
$$

When density of solution is close to $1 \mathrm{mg} / \mathrm{L}$ (such as a dilute aqueous solution):

$$
\mathrm{ppm}=\mathrm{mg} / \mathrm{L}
$$

Analytical Data in ppm
for airborne concentrations, convert ppm parts into moles
conversion factor: 1 mole of gas = 24.45 L @SATP
($25^{\circ} \mathrm{C}$ and 1 atm)

485 ppm styrene in stack test. How many pounds per cubic foot is this?

485 mol styrene	104.15 g	1 mol	lb	28.32 L
$10^{6} \mathrm{~mol}$ air	mol	24.45 L	454 g	ft^{3}

Our Friend the Mole

" 1 mole (abbreviated "mol") $=\mathbf{6 . 0 2 2 1 3 6 7 \times 1 0 ^ { 2 3 }}$ particles
particles = atoms, ions, electrons, molecules, ionic compounds (formula units)

Image source: American Chemical Society
"Mole Day": October 23 from 6:02 a.m. to 6:02 p.m. The theme of this past year was "molEvengers".

Image source: DeviantArt

- Molar mass is the mass in grams of one mole of any pure substance.
- The molar mass of any element is numerically equivalent to its atomic mass and has the units $\mathbf{g} / \mathbf{m o l}$.

1 mole of iron (fe) $\quad 55.845 \mathrm{~g} / \mathrm{mol}$

Watch out for diatomic elements:
1 mole of Hydrogen gas $\left(\mathrm{H}_{2}\right) \quad 2(1.008)=2.016 \mathrm{~g} / \mathrm{mol}$

The molar mass of a compound equals the molar mass of each element, multiplied by the moles of that element in the chemical formula, added together.

What is the molar mass of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$?
$\mathrm{H}: 2$ mole * $1.008 \mathrm{~g} / \mathrm{mol}=2.016 \mathrm{~g} / \mathrm{mol}$

O: 1 mole * $15.999 \mathrm{~g} / \mathrm{mol}=15.999 \mathrm{~g} / \mathrm{mol}$

$$
2.016+15.999=18.015 \mathrm{~g} / \mathrm{mol}
$$

For metals reported as compounds, the total weight of the compound in the amount manufactured, processed or otherwise used is counted. However, only the weight of the parent metal being reported is counted in calculating byproducts. (TURA Reporting Instructions)

- 297 pounds of lead oxide manufactured - report as pounds of lead oxide
- 297 pounds in waste scrap (by-product) - report as pounds of lead (base metal)

Use molar mass ratio to create conversion: \qquad \#Pb/\# PbO

$$
\frac{207.2 \mathrm{~g} / \mathrm{mol}(\mathrm{~Pb})}{223.2 \mathrm{~g} / \mathrm{mol}(\mathrm{PbO})}=0.928 \# \mathrm{~Pb} / \# \mathrm{PbO}
$$

297 \# PbO (0.928 \#Pb/\#PbO) = 276 pounds Pb (By-Product)
297 \# PbO - 275 \# Pb=21 \# O (Chemical is a Compound)

1026
a. MA DEP CAS \#

Lead Compounds

b. Chemical Name (Dioxin should be in grams, decimal points may be used)

Facility-wide use of chemical identified in a. Enter the total amount (in POUNDS, except for dioxin) for each applicable category. NOTE: 'Generated as byproduct' (item f.) means all waste containing the listed chemical before the waste is handled, transferred, treated, recycled or released. Please refer to the reporting instructions before completing this section.

297 Entire Compound
 c. Manufactured

e. Otherwise Used
g. Shipped In Or As Product

d. Processed
 276 regulated metal only

f. Generated As Byproduct

h. Production or Activity Ratio

Section 2: Materials Balance

When the amounts reported in c, d and e in Section 1 are added together, the sum will in many cases equal the sum of f and g. In other words, lines c, d and e will often form a "materials balance." If lines c, d and e are not in approximate balance, you must use this section to explain why. Indicate all the reasons that apply by entering the number of pounds on the appropriate line below (e.g., 4,000 Chemical was held in inventory).

> a. Chemical Was Recycled On Site
c. Chemical Was Held In Inventory

[^0]§ 3

pH

The pH Scale

Chemistry Test Answer:

the concentration of hydronium $\left[\mathrm{H}_{3} \mathrm{O}+\right]$ ions

Practical Answer:

if my aqueous solution is corrosive

A pH less than or equal to 2 or greater than or equal to 12.5 is considered corrosive.
§ 4 volatility

vapor Pressure \& volatility

- Vapor Pressure is a measure of the tendency of a material to change into the gaseous or vapor state, and it increases with temperature.
- Volatility is the tendency or ability of a liquid to vaporize.
- Vapor pressure is a measure of a liquid's volatility. A high vapor pressure usually is an indication of a volatile liquid, or one that readily vaporizes.

- Council Directive 1999/13/EC of 11 March 1999-any organic compound is considered to be a volatile organic compound (VOC) if it has a vapor pressure of 10 Pa or more at $20^{\circ} \mathrm{C}$
- Volatile compounds can evaporate into air
- Concern for worker safety through inhalation
- Consideration for air emissions in a process
- Usually expressed as "\% volatile" on an SDS
- If 20% volatile, can expect under normal, open conditions,
20% of the amount used becomes a vapor
- If $\mathbf{2 0 \%}$ volatile, can expect under normal, open conditions,
$\mathbf{2 0 \%}$ of the amount used becomes a vapor
- More detailed analysis may be needed at each process step to determine the amount of chemical lost to
evaporation \rightarrow air emissions (by-product) step to determine the amount of chemical lost to
evaporation \rightarrow air emissions (by-product) \rightarrow (by-product)
Usua
st

$$
0-2+0
$$

\square

\qquad Why Include volatility??? -

\square

 § S M has
Reviewing Substitutions

- -ol: alcohol (-OH on a carbon chain)
- flammable, volatile
- Phenol subgroup (-OH on benzene ring)
- Volatile and soluble in water
- May produce flammable vapor when heated
- Polyol: (multiple -OH groups on organic structure)
- lower volatility, combustible, but not flammable

- -al: aldehyde
- More volatile than alcohols, many exist as gases of volatile liquids
- Ether (name ends in ether)
- Highly volatile

Reviewing Substitutions

Bisphenol S

Bisphenol A
"Because BPA substitutes such as BPS and BPF have similar structures to BPA, they appear to have similar metabolism, potencies, and action to BPA. In addition, they may pose similar potential health hazards as BPA." (National Center for Biotechnology Information - "Concern about the Safety of Bisphenol A substitutes")

Bisphenol F
§ 6 stoichiometry

stoichiometry

* Calculations based on balanced stoichiometric equations
* Can using starting values and stoichiometry, along with molar mass to calculate products of the reaction

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{CO}_{2}
$$

If our process uses 657 pounds of ethane, how much carbon dioxide is theoretically produced?

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{CO}_{2}
$$

Calculations reduce to ratio of molar mass and ratio of stoichiometric coefficients. Each ratio has end point over starting point.

$657 \mathrm{lb} \mathrm{C}_{2} \mathrm{H}_{6}$	$44.01 \mathrm{~g} \mathrm{CO}_{2}$	$4 \mathrm{~mol} \mathrm{CO}_{2}$
	$30.07 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6}$	$2 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}$

cramuyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Questions??

H																															${ }^{2} \mathrm{He}$
	Be Botin																									${ }^{5} \mathrm{~B}$		\mathbf{N}			
${ }^{11} \mathrm{Na}$	${ }^{12} \mathrm{Mg}$																									${ }^{13} \mathrm{Al}$	${ }^{4} \mathrm{Si}$	${ }^{15} \mathbf{P}$	${ }^{16} \mathrm{~S}$	${ }^{17} \mathrm{Cl}$	
																${ }^{21} \text { SC }$	${ }_{\operatorname{Tan}}^{2 n}$	${ }^{23} \mathrm{~V}$	${ }^{24} \mathrm{Cr}$	${ }_{3}^{23} \mathrm{Mn}$	${ }^{26} \mathrm{Fe}$	${ }^{27} \mathrm{Co}$	${ }^{n} \mathrm{Ni}$	Cu cone	${ }^{30} \mathrm{Zn}$	Ga Ginin	${ }^{3} \mathrm{Ge}$	${ }^{33} \mathrm{As}$	${ }^{34} \mathrm{Se}$	Br turin now	
$\text { 等 } \mathbf{R b}$	${ }_{2 i n}^{38} \mathrm{Sr}$															${ }^{39} \mathbf{Y}$	Zr	${ }^{41} \mathrm{Nb}$ Nom	${ }^{42} \mathrm{Mo}$	${ }^{43} \text { Tc }$	${ }^{4} \mathrm{Ru}$ Rum	Rh Whedan $\times 2005$	${ }^{46} \mathrm{Pd}$ 10	Ag	${ }^{48} \mathrm{Cd}$ 	In minn		Sb Nim	32 Te wis	${ }^{33}$ I	${ }^{4} \mathrm{Xe}$
	Ba Ban		${ }^{58} \mathrm{Ce}$	${ }^{5 n} \mathrm{Pr}$	${ }^{6} \mathrm{Nd}$		Sm	${ }^{6} \mathrm{Eu}$								${ }^{n} \mathrm{Lu}$	72 Hf ritam	${ }^{3} \mathrm{Ta}$ Tite	W logem	${ }^{3}$ Re Nomit	Os amen	$\overbrace{\substack{n \\ \text { nidun } \\ \text { nown }}}$	Pt Pe thon	Au cou	50 Hg uner	${ }^{n 1} \mathrm{TI}$	${ }^{12} \mathrm{~Pb}$		${ }^{4} \mathrm{Po}$	${ }^{55}$	
			Th									Es		Md		${ }^{103} \mathbf{L r}$	${ }^{104} \mathrm{Rf}$		${ }_{\substack{106 \\ 5 g \\ 0.0}}$			$\underset{\substack{\text { and }}}{\substack{100 \\ M t}}$	${ }^{110}$ Ds	${ }_{\sim}^{\mathrm{L1}} \mathrm{Rg}$	${ }^{112} \mathrm{Cn}$	$\underbrace{131} \mathrm{Nh}$		${ }_{\text {M }}^{\text {M }}$		${ }^{117}$ Ts	Og^{10}

$$
\because=\Xi \Xi \because \boxminus \exists \square \square
$$

[^0]: b. Chemical Was Consumed Or Transformed

 21 non-metal portion of compound d. Chemical Is A Compound

